Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.348
Filter
1.
Article in English | MEDLINE | ID: mdl-38728182

ABSTRACT

OBJECTIVE: Atherosclerosis is a chronic inflammatory disease of the arteries, and its pathogenesis is related to endothelial dysfunction. It has been found that the protein convertase subtilin/kexin9 type (PCSK9) plays an important role in AS, but its specific mechanism is still unclear. METHODS: In this study, we first cultured human umbilical vein endothelial cells (HUVECs) with 50 or 100µg/ml oxidized low-density lipoprotein (ox-LDL) for 24 hours to establish a coronary atherosclerosis cell model. RESULTS: The results showed that ox-LDL induced HUVEC injury and autophagy and upregulated PCSK9 protein expression in HUVECs in a concentration-dependent manner. Silencing PCSK9 expression with siRNA inhibited ox-LDL-induced HUVEC endothelial dysfunction, inhibited the release of inflammatory factors, promoted HUVEC proliferation and inhibited apoptosis. In addition, ox-LDL increased the expression of LC3B-I and LC3B-II and decreased the expression of p62. However, these processes are reversed by sh-PCSK9. In addition, sh-PCSK9 can inhibit PI3K, AKT and mTOR phosphorylation and promote autophagy. CONCLUSION: Taken together, our research shows that silencing PCSK9 inhibits the PI3K/ATK/mTOR pathway to activate ox-LDL-induced autophagy in vascular endothelial cells, alleviating endothelial cell injury and inflammation.

2.
J Hazard Mater ; 471: 134467, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38691930

ABSTRACT

The beneficial roles of hydrochar in carbon sequestration and soil improvement are widely accepted. Despite few available reports regarding polycyclic aromatic hydrocarbons (PAHs) generated during preparation, their potential negative impacts on ecosystems remain a concern. A heating treatment method was employed in this study for rapidly removing PAHs and reducing the toxicity of corn stover-based hydrochar (CHC). The result showed total PAHs content (∑PAH) decreased and then sharply increased within the temperature range from 150 °C to 400 °C. The ∑PAH and related toxicity in CHC decreased by more than 80% under 200 °C heating temperature, compared with those in the untreated sample, representing the lowest microbial toxicity. Benzo(a)pyrene produced a significant influence on the ecological toxicity of the hydrochar among the 16 types of PAHs. The impact of thermal treatment on the composition, content, and toxicity of PAHs was significantly influenced by the adsorption, migration, and desorption of PAHs within hydrochar pores, as well as the disintegration and aggregation of large molecular polymers. The combination of hydrochar with carbonized waste heat and exhaust gas collection could be a promising method to efficiently and affordably reduce hydrochar ecological toxicity.


Subject(s)
Hot Temperature , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/toxicity , Soil Pollutants/chemistry , Charcoal/chemistry , Zea mays , Soil/chemistry , Adsorption , Heating
3.
Sci Total Environ ; : 173102, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729363

ABSTRACT

Although the exclusion effects of invertebrate decomposers on litter decomposition have been extensively studied in different experimental contexts, a thorough comparison of the exclusion effects of invertebrate decomposers with different body sizes on litter decomposition and its possible regulatory factors in terrestrial and aquatic ecosystems is still lacking. Here, through a meta-analysis of 1207 pairs of observations from 110 studies in terrestrial ecosystems and 473 pairs of observations from 60 studies in aquatic ecosystems, we found that invertebrate exclusion reduced litter decomposition rates by 36 % globally, 30 % in terrestrial ecosystems, and 44 % in aquatic ecosystems. At the global scale, the exclusion effects of macroinvertebrates and mesoinvertebrates on litter decomposition rates (reduced by 38 % and 36 %, respectively) were greater than those of the combination of macroinvertebrates and mesoinvertebrates (reduced by 30 %). In terrestrial and aquatic ecosystems, the effects of invertebrate exclusion on litter decomposition rates were mainly regulated by climate and initial litter quality, but the effects of invertebrate exclusion with different body sizes were regulated differently by climate, initial litter quality, and abiotic environmental variables. These findings will help us better understand the role of invertebrate decomposers in litter decomposition, especially for invertebrate decomposers with different body sizes, and underscore the need to incorporate invertebrate decomposers with different body sizes into dynamic models of litter decomposition to examine the potential effects and regulatory mechanisms of land-water-atmosphere carbon fluxes.

4.
Orthop Surg ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726583

ABSTRACT

The accurate fenestration, screw implantation and assisting stabilizing-plate placement in surgery of benign tumors in the proximal femur needs be defined easily. The aim of this study was to investigate the value of 3D printed multifunctional guides plate (3D-MGP) based on computer aided design. Between January 2020 and June 2022, 17 patients (nine females and eight males) with benign proximal femoral tumor had lesion curettage and allograft combined with internal plate fixation using 3D-MGP. In this study, the patients had CT scans and a technician reconstructed the 3D images of tumor and the femur, a doctor designed the location and margin of the fenestration and screws, and integrated different functions into MGP for benign proximal femoral lesions, which assisted in precise localization, fenestration and screw drilling. Musculoskeletal Tumor Society (MSTS) scoring was used to evaluate lower extremity function. Bone healing and the screws location was assessed with the radiographs. All patients underwent successful surgery with complete resection of the tumor and internal fixation with using the 3D-MGP. The mean follow-up was 16.4 months. The operative time was 126.47 ± 18.44 min, intraoperative bleeding was 198.23 ± 67.94 mL, intraoperative fluoroscopy was 6.47 ± 0.62, postoperative drainage was 223.82 ± 119.51 mL, and MSTS score was 27.29 ± 1.31 points. There were no unplanned fenestration and improper screw fixation. The 3D-MGP enabled personalized and accurate location of tumor, fenestration, screw placement and assisted stabilizing-plate placement for the treatment of benign tumor of the proximal femur. This technique has the potential to shorten operative times, decrease intraoperative bleeding, and reduce radiation exposure to patients.

5.
BMJ Open ; 14(5): e079144, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719318

ABSTRACT

INTRODUCTION: The effectiveness of antibiotics for treating gonococcal infections is compromised due to escalating antibiotic resistance; and the development of an effective gonococcal vaccine has been challenging. Emerging evidence suggests that the licensed meningococcal B (MenB) vaccine, 4CMenB is effective against gonococcal infections due to cross-reacting antibodies and 95% genetic homology between the two bacteria, Neisseria meningitidis and Neisseria gonorrhoeae, that cause the diseases. This project aims to undertake epidemiological and genomic surveillance to evaluate the long-term protection of the 4CMenB vaccine against gonococcal infections in the Northern Territory (NT) and South Australia (SA), and to determine the potential benefit of a booster vaccine doses to provide longer-term protection against gonococcal infections. METHODS AND ANALYSES: This observational study will provide long-term evaluation results of the effectiveness of the 4CMenB vaccine against gonococcal infections at 4-7 years post 4CMenB programme implementation. Routine notifiable disease notifications will be the basis for assessing the impact of the vaccine on gonococcal infections. Pathology laboratories will provide data on the number and percentage of N. gonorrhoeae positive tests relative to all tests administered and will coordinate molecular sequencing for isolates. Genome sequencing results will be provided by SA Pathology and Territory Pathology/New South Wales Health Pathology, and linked with notification data by SA Health and NT Health. There are limitations in observational studies including the potential for confounding. Confounders will be analysed separately for each outcome/comparison. ETHICS AND DISSEMINATION: The protocol and all study documents have been reviewed and approved by the SA Department for Health and Well-being Human Research Ethics Committee (HREC/2022/HRE00308), and the evaluation will commence in the NT on receipt of approval from the NT Health and Menzies School of Health Research Human Research Ethics Committee. Results will be published in peer-reviewed journals and presented at scientific meetings and public forums.


Subject(s)
Gonorrhea , Meningococcal Vaccines , Neisseria gonorrhoeae , Humans , Gonorrhea/prevention & control , Gonorrhea/epidemiology , Northern Territory/epidemiology , Meningococcal Vaccines/administration & dosage , Meningococcal Vaccines/therapeutic use , Neisseria gonorrhoeae/immunology , South Australia/epidemiology , Observational Studies as Topic , Female
6.
PLoS One ; 19(5): e0301451, 2024.
Article in English | MEDLINE | ID: mdl-38743650

ABSTRACT

As an emerging business modality and Internet format, live streaming e-commerce has developed rapidly since its emergence in 2016, especially since the outbreak of the COVID-19 epidemic in late 2019, when an increasing number of businesses from other industries attracted participation. However, with the development of the live streaming e-commerce industry, the industry's market environment is becoming increasingly chaotic. Therefore, during this period, government departments continuously formulate and implement relevant industry policies. In order to exploring the cooperation network structure, policy content distribution, and implementation effectiveness characteristics among publishers, this paper constructs a three-dimensional analysis framework of policy from the perspective of policy tools, policy effectiveness evaluation and policy publishers. The results show that in terms of policy tools, the overall structure of policy tools in the live streaming e-commerce industry is unreasonable, and different types of policy tools are significantly diverse. The proportion of environmental policy tools is greater than that of demand-based and supply-based policy tools, accounting for 62.97%, and among them, the tools related to industry regulation and management account for the largest proportion of the total, which greatly suppresses the enthusiasm of various entities in the industry for development. In terms of policy effectiveness evaluation, most of the policies do not formulate detailed long-, medium-, or short-term goals, nor are the policy priorities, incentive measures, or action modes perfect, indicating that the government's pushing and pulling forces for the live streaming e-commerce industry are insufficient. Finally, in the subject dimension of policy release, the synergy of relevant subjects is constantly improving, but there is also a phenomenon of over-concentration in the synergistic departments.


Subject(s)
COVID-19 , China , Humans , COVID-19/epidemiology , Industry , Commerce , SARS-CoV-2 , Internet
9.
Adv Sci (Weinh) ; : e2401664, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704673

ABSTRACT

Deep-blue multi-resonance (MR) emitters with stable and narrow full-width-at-half-maximum (FWHM) are of great importance for widening the color gamut of organic light-emitting diodes (OLEDs). However, most planar MR emitters are vulnerable to intermolecular interactions from both the host and guest, causing spectral broadening and exciton quenching in thin films. Their emission in the solid state is environmentally sensitive, and the color purity is often inferior to that in solutions. Herein, a molecular design strategy is presented that simultaneously narrows the FWHM and suppresses intermolecular interactions by combining intramolecular locking and peripheral shielding within a carbonyl/nitrogen-based MR core. Intramolecularly locking carbonyl/nitrogen-based bears narrower emission of 2,10-dimethyl-12,12-diphenyl-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione in solution and further with peripheral-shielding groups, deep-blue emitter (12,12-diphenyl-2,10-bis(9-phenyl-9H-fluoren-9-yl)-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione, DPQAO-F) exhibits ultra-pure emission with narrow FWHM (c.a., 24 nm) with minimal variations (∆FWHM ≤ 3 nm) from solution to thin films over a wide doping range. An OLED based on DPQAO-F presents a maximum external quantum efficiency (EQEmax) of 19.9% and color index of (0.134, 0.118). Furthermore, the hyper-device of DPQAO-F exhibits a record-high EQEmax of 32.7% in the deep-blue region, representing the first example of carbonyl/nitrogen-based OLED that can concurrently achieve narrow bandwidth in the deep-blue region and a high electroluminescent efficiency surpassing 30%.

10.
Data Brief ; 54: 110465, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38711736

ABSTRACT

Trimethylamine-N-oxide (TMAO) is a gut-derived metabolite formed from dietary choline and l-carnitine, known to impede cholesterol metabolism and is implicated in the pathogenesis of thrombosis and atherosclerosis, contributing to the etiology of cardiovascular diseases. We present a dataset derived from an experimental study designed to elucidate the cardiotoxic effects of TMAO. This dataset encompasses echocardiographic assessments from two cohorts of mice: one subjected to a 6-week regimen of 20 mg/kg/day TMAO injections (n = 16) and a control group (n = 18). Each subject's echocardiographic dataset comprises six high-resolution TIFF images, capturing both B-type and M-mode views in standard echocardiographic planes, along with two additional M-mode images enriched with analysed cardiac functional data. Complementing these images, a CSV-formatted report details critical cardiac parameters, including heart rate, ejection fraction, and fractional shortening, among others. In a novel approach to enhance data integrity and permit tailored analyses, we provide the original output files from the echocardiography apparatus, which researchers can reprocess using dedicated analysis software. This dataset is anticipated to be instrumental in advancing our understanding of the mechanistic links between TMAO exposure and cardiac dysfunction.

11.
Anal Chim Acta ; 1306: 342585, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692786

ABSTRACT

Herein, we developed a convenient and versatile dual-mode electrochemiluminescence (ECL) and photoelectrochemistry (PEC) sensing radar for the detection of Prostate-specific antigen (PSA), which has important implications for detection of low-abundance disease-associated proteins. Cerium-based metal-organic framework (Ce-MOFs) were firstly modified on the electrode, showing well ECL and PEC property. In particular, a unique multifunctional Au@CdS quantum dots (QDs) probe loaded numerous QDs and antibody was fabricated, not only displaying strong ECL and PEC signals, but also having specific recognition to PSA. After the signal probe was linked to the electrode by immune reaction, much amplified signals of ECL and PEC were generated for double-mode detection of PSA. Therefore, this work proposed a multifunctional Au@CdS QDs signal probe with excellent ECL and PEC performance, and developed an ultrasensitive photoelectric biosensing platform for dual-mode detection, which provides an effective method for health monitoring of cancer patients.


Subject(s)
Cadmium Compounds , Electrochemical Techniques , Metal-Organic Frameworks , Prostate-Specific Antigen , Quantum Dots , Sulfides , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Sulfides/chemistry , Humans , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/blood , Metal-Organic Frameworks/chemistry , Gold/chemistry , Cerium/chemistry , Biosensing Techniques , Photochemical Processes , Limit of Detection , Electrodes , Luminescent Measurements
12.
Vascular ; : 17085381241254427, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739928

ABSTRACT

OBJECTIVES: Blunt thoracic aortic injuries (BTAIs) involving the aortic arch are a challenging condition. Thoracic endovascular aortic repair (TEVAR) with fenestration, which expands the proximal landing zone, is able to exclude the injury while preserving blood flow in supra-aortic branches. METHODS: Here we report a case of TEVAR with fenestrations of all supra-aortic branches for traumatic aortic pseudoaneurysm and perform a systematic review. RESULTS: A 24-year-old man suffering a blunt thoracic injury and a left femoral fracture was sent to our hospital. A pseudoaneurysm was found in the aortic arch between the brachiocephalic artery and the left common carotid artery. The patient underwent emergent TEVAR with fenestrations of all supra-aortic branches, which excluded the pseudoaneurysm and preserved the patency of all branches. The orthopedic team then treated the femoral fracture. The patient's recovery was unremarkable. We performed a systematic review on TEVAR with fenestrations for BTAI. Six patients (75%) received TEVAR with single fenestration, 1 patient (12.5%) received TEVAR with two fenestrations, and 1 patient (12.5%) had fenestrations of all supra-aortic branches. Except one patient died in the perioperative, other patients survived without stent-related complications in the short-term follow-up. CONCLUSIONS: TEVAR with fenestration is feasible for treating BTAI involving the aortic arch in selected patients.

13.
Adv Mater ; : e2403215, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706406

ABSTRACT

Prolonging energetic hot electrons lifetimes and surface activity in the reactive site can overcome the slow kinetics and unfavorable thermodynamics of photo-activated gas sensors. However, bulk and surface recombination limit the simultaneous optimization of both kinetics and thermodynamics. Here tandem electric fields are deployed at (111)/(100)Au-CeO2 to ensure a sufficient driving force for carrier transfer and elucidate the mechanism of the relationship between charge transport and gas-sensing performance. The asymmetric structure of the (111)/(100)CeO2 facet junction provides interior electric fields, which facilitates electron transfer from the (100)face to the (111)face. This separation of reduction and oxidation reaction sites across different crystal faces helps inhibit surface recombination. The increased electron concentration at the (111)face intensifies the interface electric field, which promotes electron transfer to the Au site. The local electric field generated by the surface plasmon resonance effect promotes the generation of high-energy energy hot-electrons, which maintains charge concentration in the interface field by injecting into (111)/(100)CeO2, thereby provide thermodynamic contributions and inhibit bulk recombination. The tandem electric fields enable the (111)/(100)Au-CeO2 to rapidly detect 5 ppm of NO2 at room temperature with stability maintained within 20 s.

14.
Int J Mol Sci ; 25(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732181

ABSTRACT

B cell receptor-associated protein 31 (BAP31) is a transmembrane protein that is widely expressed and primarily located in the endoplasmic reticulum (ER). B cells play a crucial role in the immune system, and BAP31 significantly contributes to the functions of various immune cells. However, the specific role of BAP31 in B lymphocytes development remains unknown. In this study, we utilized a mouse model with BAP31 deleted from B cells to investigate its effects. Our findings reveal a block in early B cell development in the bone marrow and a significant decrease in the number of B cells in peripheral lymphoid organs taken from BAP31 B cell conditional knockout (BAP31-BCKO) mice. B cell receptor (BCR) signaling is crucial for the normal development and differentiation of B lymphocytes. BAP31, an endoplasmic reticulum membrane protein, directly regulates the BCR signaling pathway and was shown to be significantly positively correlated with B cell activation and proliferation. These findings establish BAP31 as a crucial regulator of early B cell development.


Subject(s)
B-Lymphocytes , Cell Differentiation , Mice, Knockout , Receptors, Antigen, B-Cell , Signal Transduction , Animals , B-Lymphocytes/metabolism , Mice , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, B-Cell/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cell Proliferation , Lymphocyte Activation , Mice, Inbred C57BL
15.
Phytomedicine ; 129: 155636, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38640860

ABSTRACT

BACKGROUD: Chronic fatigue syndrome (CFS) severely impact patients' quality of life and lacks well-acknowledged drug therapy. Sijunzi decoction (SJZD), a classical Chinese herbal formula, has been widely used for spleen deficiency syndrome like fatigue in China. However, there is a lack of evidence on the efficacy of SJZD in treating CFS. PURPOSE: To evaluate the efficacy and safety of SJZD for CFS. STUDY DESIGN: A multi-center, double-blinded, randomized controlled trial. METHODS: Participants with definite diagnoses of CFS and spleen deficiency syndrome were randomly assigned in 1:1 ratio to receive SJZD or placebo granules for 2 months. The primary outcome was the change of Chalder fatigue questionnaire (CFQ) scoring after treatment. Other outcomes included changes in short form-36 physical function (SF36-PF) score, spleen deficiency scale score, Euroqol Questionnaire-Visual Analogue Scale (ED-VAS) score, and clinical global impression (CGI) evaluating by corresponding questionnaires. Fecal metagenome sequencing was conducted to explore the potential mechanism of SJZD effect. RESULTS: From June 2020 to July 2021, 105 of 127 participants completed the study at four hospitals in China. After a 2-month treatment, intention-to-treat (ITT) analysis found participants who received SJZD had larger reduction than placebo control (mean change 6.65 [standard deviation (SD) 6.11] points vs. 5.31 [SD 5.19] points; difference 1.34, 95 % confidence interval [CI] -0.65 to 3.33). Per-protocol (PP) analysis reported confirmative results with a significant difference between SJZD and placebo groups (2.24, 95 % CI 0.10 to 4.39). SJZD also significantly improved overall health status compared with placebo in per-protocol population (p = 0.009). No significant difference was found between groups in changes of SF36-PF, spleen deficiency scale scoring, and CGI. Fecal metagenome sequencing and correlation analyses indicated that the beneficial effect of SJZD may be related to the abundance change of Pediococcus acidilactici. No serious adverse event or abnormal laboratory test was found during the whole study. CONCLUSION: Our results indicated that SJZD can improve fatigue symptom and overall health status in patients with CFS under good medication adherence. Potential therapeutic effects may be related to the regulation of gut microbiota. Large-scale trials with longer intervention period are encouraged to further support SJZD's application. CLINICAL TRIAL REGISTRATION: (ID, ISRCTN23930966, URL = https://www.isrctn.com/ISRCTN23930966).

17.
Int Immunopharmacol ; 132: 112024, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38608475

ABSTRACT

Ulcerative colitis (UC) is a recurrent intestinal disease with an increasing incidence worldwide that seriously affects the life of patients. Turtle peptide (TP) is a bioactive peptide extracted from turtles that has anti-inflammatory, antioxidant and anti-aging properties. However, studies investigating the effect of TP on the progression of UC are lacking. The aim of this study was to investigate effects and underlying mechanisms of TP and its derivative peptide GPAGPIGPV (GP-9) in alleviating UC in mice. The results showed that 500 mg/kg TP treatment significantly ameliorated colitis symptoms and oxidative stress in UC mice. TP alleviated intestinal barrier damage in UC mice by promoting mucosal repair and increasing the expression of tight junction proteins (ZO1, occludin and claudin-1). TP also modulated the composition of the gut microbiota by increasing the abundance of the beneficial bacteria Anaerotignum, Prevotellaceae_UCG-001, Alistipes, and Lachno-spiraceae_NK4A136_group and decreasing the abundance of the harmful bacteria Prevotella_9 and Parasutterella. Furthermore, we characterized the peptide composition of TP and found that GP-9 ameliorated the symptoms of dextran sodium sulfate (DSS)-induced colitis in mice by inhibiting the TLR4/NF-κB signaling pathway. In conclusion, TP and its derivative peptides ameliorated DSS-induced ulcerative colitis by inhibiting the expression of inflammatory factors and modulating the composition of the intestinal microbiota; this study provides a theoretical basis for the application of TP and its derivative peptides for their anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Dextran Sulfate , Gastrointestinal Microbiome , Mice, Inbred C57BL , Peptides , Turtles , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/pathology , Colitis, Ulcerative/immunology , Gastrointestinal Microbiome/drug effects , Mice , Peptides/therapeutic use , Peptides/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Turtles/microbiology , Turtles/immunology , Male , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Disease Models, Animal , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Colon/pathology , Colon/drug effects , Humans , Oxidative Stress/drug effects , Signal Transduction/drug effects
18.
Sci Total Environ ; 930: 172815, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38679089

ABSTRACT

The ammonia nitrogen in arable land soil is susceptible to environmental and anthropogenic influences, leading to nutrient loss. This study utilized indoor soil column leaching experiments, combined with adsorption mathematical models, traditional characterization methods, and molecular dynamics simulation methods, to analyze the effects of biochar on changes in ammonium ions in different soil layers and leachate of arable land soil. The study found that applying biochar at a ratio of 10 % to arable land soil could effectively increase the ammonium ion content in the 0-10 cm soil layer by 1.57-2.36 times and reduce loss by 44.83-72.27 %. The adsorption and fixation process of biochar is controlled by electrostatic attraction and ion exchange processes. Interactions between molecules, electrostatic forces, and system internal energy also have certain effects on the process. Near the structure of C6H12O6, there are low-energy adsorption sites for ammonium ions, which can provide the energy required for electrostatic attraction. Structures such as C5H10O5, C-S-H, C-SO3, and C4H7NO4 respectively play roles in physical adsorption or chemical adsorption through displacement reactions, electron exchange, and other forms. The adsorption free energy is -394,590.84 kcal/mol, indicating stable adsorption and a process that tends to interact with the biochar surface. This study addresses issues such as the easy loss of ammonia nitrogen in arable land soil and the unclear adsorption mechanism of biochar on ammonium ions, providing a theoretical basis for the field of environmental science.

19.
EMBO Rep ; 25(5): 2375-2390, 2024 May.
Article in English | MEDLINE | ID: mdl-38594391

ABSTRACT

Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.


Subject(s)
Chemokine CCL2 , Ganglia, Spinal , Neuralgia , Neurons , Neurotrophin 3 , Paclitaxel , Receptor, trkC , Animals , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Neuralgia/chemically induced , Neuralgia/metabolism , Neuralgia/genetics , Paclitaxel/adverse effects , Paclitaxel/pharmacology , Neurotrophin 3/metabolism , Neurotrophin 3/genetics , Male , Mice , Neurons/metabolism , Neurons/drug effects , Female , Receptor, trkC/metabolism , Receptor, trkC/genetics , Antineoplastic Agents/adverse effects , RNA, Messenger/metabolism , RNA, Messenger/genetics
20.
IEEE Open J Eng Med Biol ; 5: 216-225, 2024.
Article in English | MEDLINE | ID: mdl-38606400

ABSTRACT

Goal: Cervical cancer is one of the most common cancers in women worldwide, ranking among the top four. Unfortunately, it is also the fourth leading cause of cancer-related deaths among women, particularly in developing countries where incidence and mortality rates are higher compared to developed nations. Colposcopy can aid in the early detection of cervical lesions, but its effectiveness is limited in areas with limited medical resources and a lack of specialized physicians. Consequently, many cases are diagnosed at later stages, putting patients at significant risk. Methods: This paper proposes an automated colposcopic image analysis framework to address these challenges. The framework aims to reduce the labor costs associated with cervical precancer screening in undeserved regions and assist doctors in diagnosing patients. The core of the framework is the MFEM-CIN hybrid model, which combines Convolutional Neural Networks (CNN) and Transformer to aggregate the correlation between local and global features. This combined analysis of local and global information is scientifically useful in clinical diagnosis. In the model, MSFE and MSFF are utilized to extract and fuse multi-scale semantics. This preserves important shallow feature information and allows it to interact with the deep feature, enriching the semantics to some extent. Conclusions: The experimental results demonstrate an accuracy rate of 89.2% in identifying cervical intraepithelial neoplasia while maintaining a lightweight model. This performance exceeds the average accuracy achieved by professional physicians, indicating promising potential for practical application. Utilizing automated colposcopic image analysis and the MFEM-CIN model, this research offers a practical solution to reduce the burden on healthcare providers and improve the efficiency and accuracy of cervical cancer diagnosis in resource-constrained areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...